节点文献

网络测量中自适应数据采集方法(英文)

Adaptive Sampling Methodology in Network Measurements

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王俊峰杨建华周虹霞谢高岗周明天

【Author】 WANG Jun-Feng 1,2+, YANG Jian-Hua3, ZHOU Hong-Xia4, XIE Gao-Gang3, ZHOU Ming-Tian1 1(College of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China) 2(Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China) 3(Network Research Division, Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100080, China) 4(College of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China)

【机构】 电子科技大学计算机科学与工程学院,中国科学院计算技术研究所信息网络研究室,电子科技大学电子工程学院,中国科学院计算技术研究所信息网络研究室,电子科技大学计算机科学与工程学院 四川成都610054中国科学院软件研究所,北京100080,北京100080,四川成都610054,北京100080,四川成都610054

【摘要】 抽样方法广泛地应用于网络测量与其他领域对被测总体的指标进行估计.研究表明,多种网络指标呈现重尾分布或自相似的特征.这些特性为准确估计总体指标带来了诸多困难.但同时,对被测网络指标进行建模也有着重要的应用.然而,建立精确网络模型是困难的.从时间序列拟合角度出发,提出了一种基于拟合的自适应抽样方法,对被测指标进行基于测量的建模.工作主要体现在: (1) 采用分段线性函数对被测指标进行逼近,建立基于测量的模型; (2) 与常用的抽样方法相比,在相同的样本数情况下,由拟合模型对指标进行的估计更准确、更稳定;通过对两个测量记录的分析表明,在与常用抽样方法保持相同的拟合误差时,自适应抽样方法明显地减少了所需采集的样本数量; (3) 与其他概率抽样方法相比,自适应抽样最终抽取的样本数更稳定、更可靠,并给出了最终样本数的概率分布.

【Abstract】 Sampling methodologies are widely used in network measurements and other related fields. Most applications mainly focus on parent population statistical metrics estimation of interest. Recent researches reveal that many aspects of network characters present heavy-tailed distribution or self-similarity. These properties might cause a heavy passive effect on the estimation accuracy. In other circumstances, there exist demands on modeling the characteristics of a network in network operation. To develop an accurate model for network character is much difficult. From a broader view, these applications are treated as special cases of fitting problems of planar data set or time series in applied mathematics. In the paper, a Fitting-based adaptive sampling methodology (FASM) is developed for reconstructing the evolution of some network characteristics (model). The contributions of the paper include: (1) Adopting a Piecewise Linear Function Approximation scheme to provide a more accurate approximation of the true character. (2) The statistical metric derived from the FASM provides a much more stable and accurate estimation than other popular methodologies under the same sampling size. Experiments based on two measurement traces show that the FASM can dramatically reduce the number of samples while retaining the same approximating residual error as others. (3) The variance of sampling size is more stable than those of other probability sampling schemes.

【基金】 国家高技术研究发展计划(863);计算技术研究所青年基金~~
  • 【文献出处】 软件学报 ,Journal of Software , 编辑部邮箱 ,2004年08期
  • 【分类号】TP274.2
  • 【被引频次】29
  • 【下载频次】288
节点文献中: 

本文链接的文献网络图示:

本文的引文网络