节点文献
非对称多模量子叠加态光场的等幂高次和压缩
Equal power higher-order sum-squeezing in nonsymmetry multi-mode quantum superposition state
【摘要】 根据量子力学中的态叠加原理,构造了由多模复共轭相干态|{zj(a)*}>q和多模复共轭相干态|{zj(b)*}>q的相反态|{-zj(b)*}>q的线性叠加所组成的非对称两态叠加多模量子叠加态光场|ψ(2)>q,利用多模压缩态理论研究了态|ψ1f(2)>q的等幂高次和压缩特性,结果表明: 1)当Rj(a)=Rj(b)和ψj(a)-ψj(b)=±(2k+1)π(k=0,1,2,3……),态|ψ1f(2)>q的两个正交相位分量均处于N-H最小测不准态的结果;2)当Rj(a)=Rj(b)=Rj和ψj(a)=ψj(b)=ψj,ψ态|1f(2)>q的等幂高次和压缩与文献3的结果相似; 3)当Rj(a)≠Rj(b)=Rj和ψj(a)=ψj(b)=ψj,且和满足一定条件时,无论qN为奇数还是偶数,态|ψ1f(2)>q的两个正交相位分量均可分别呈现周期性变化的等幂高次和压缩效应,但qN为奇数时的压缩深度大于qN为偶数时的压缩深度。
【Abstract】 Based on the superposition theory in the quantum mechanics, the nonsymmetrymulti-mode Quantum superposition state light field |ψ1f(2)>q is constituted by complex conjugate multi-mode coherent state light field \{zj(a)*}>q and reversed state |{-Zj(b)*}>q of complex conjugate multi-mode coherent state. By using higer-order squeezing theory in multi-mode state, It is studied that equal power higher-order sum-squeezing properties in the |ψ1f(2)>q,it is found: 1) When Rj(a) = Rj(b) = Rj and ψj(a) - ψj(b) = ±(2k1 + 1)π(k1 = 0, 1, 2, 3, ...... ), thetwo quardrature phase components in the |ψ1f(2)>q are all in N - H smallest uncertain state; 2) When Rj (a) = Rj(b) = Rj and ψj(a) = ψj(b) = ψj equal power higher-order sum-squeezing in\ψ1f(2)>q looks like the results in the literature 3; 3) When Rj(a)#Rj(b) and ψj(a) =ψj(b) = ψj andthe certain conditions are saisfied by and , The two quardrature phasecomponents in |ψ1f(2)>q all present respectively equal power higher-order oum-squeezing effect which changes periodically whether qN is odd number or even number, but squeezing-intensity under qN is odd number is bigger then squeezing-intensity under qN is even number.
【Key words】 quantum optics; multi-mode coherent state; multi-mode superposition light field state; superposition of two nonsymmetry quantum states; N-H smallest uncertain state; equal power higher-order sum-squeezing;
- 【文献出处】 量子电子学报 ,Chinese Journal of Quantum Electronics , 编辑部邮箱 ,2004年04期
- 【分类号】O431.2
- 【被引频次】2
- 【下载频次】24