节点文献
利用人工鱼群算法优化前向神经网络
Optimization of feed-forward neural networks based on artificial fish-swarm algorithm
【摘要】 人工鱼群算法(AFSA)是一种最新提出的新型的寻优策略,文中尝试将人工鱼群算法用于三层前向神经网络的训练过程,建立了相应的优化模型,进行了实际的编程计算,并与加动量项的BP算法、演化算法以及模拟退火算法进行比较,结果表明AFSA具有鲁棒性强,全局收敛性好,以及对初值的不敏感性等特点。
【Abstract】 Artificial Fish-swarm Algorithm(AFSA) is a novel optimizing method proposed lately.An Artificial Fish-swarm Algorithm(AFSA) for the optimization of feed-forward neural networks and a model based on this method were presented for the first time here.Compared with the Back-propagation Algorithm added momentum,the Evolve Algorithm and the Simulated Anncaling Algorithm,optimization result of feed-forward neural networks by AFSA demonstrates that AFSA has a strong robustness and good global astringency.AFSA is also proved to be insensitive to initial values.
【关键词】 人工鱼群算法;
前向神经网络;
随机搜索;
【Key words】 artificial fish-swarm algorithm; feed-forward neural networks; random search;
【Key words】 artificial fish-swarm algorithm; feed-forward neural networks; random search;
- 【文献出处】 计算机应用 ,Computer Applications , 编辑部邮箱 ,2004年10期
- 【分类号】TP183
- 【被引频次】111
- 【下载频次】805