节点文献

利用人工鱼群算法优化前向神经网络

Optimization of feed-forward neural networks based on artificial fish-swarm algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 马建伟张国立谢宏周春雷王晶

【Author】 MA Jian-wei~1,ZHANG Guo-li~2,XIE Hong~3,ZHOU Chun-lei~1,WANG Jing~1(1.Department of Computer Science and Engineering,North China Electric Power University,Baoding Hebei 071003,China;2.Department of Applied Mathematics,North China Electric Power University,Baoding Hebei 071003,China;3.Department of Electronic Engineering,Shanghai Maritime University,Shanghai 200135,China)

【机构】 华北电力大学计算机科学与工程系华北电力大学应用数学系上海海事大学电子工程系华北电力大学计算机科学与工程系 河北保定071003河北保定071003上海200135河北保定071003河北保定071003

【摘要】 人工鱼群算法(AFSA)是一种最新提出的新型的寻优策略,文中尝试将人工鱼群算法用于三层前向神经网络的训练过程,建立了相应的优化模型,进行了实际的编程计算,并与加动量项的BP算法、演化算法以及模拟退火算法进行比较,结果表明AFSA具有鲁棒性强,全局收敛性好,以及对初值的不敏感性等特点。

【Abstract】 Artificial Fish-swarm Algorithm(AFSA) is a novel optimizing method proposed lately.An Artificial Fish-swarm Algorithm(AFSA) for the optimization of feed-forward neural networks and a model based on this method were presented for the first time here.Compared with the Back-propagation Algorithm added momentum,the Evolve Algorithm and the Simulated Anncaling Algorithm,optimization result of feed-forward neural networks by AFSA demonstrates that AFSA has a strong robustness and good global astringency.AFSA is also proved to be insensitive to initial values.

  • 【文献出处】 计算机应用 ,Computer Applications , 编辑部邮箱 ,2004年10期
  • 【分类号】TP183
  • 【被引频次】111
  • 【下载频次】805
节点文献中: 

本文链接的文献网络图示:

本文的引文网络