节点文献

可调整C~2四次Bézier插值曲线的构造

Constructing of Adjustable C~2 Quartic Bézier Interpolation Curve

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张彩明汪嘉业

【Author】 ZHANG Cai-Ming 1),2) WANG Jia-Ye 2) 1)(Department of Computer Science and Technology, Shandong Economic University, Jinan 250014) 2)(School of Computer Science and Technology, Shandong University, Jinan 250061)

【机构】 山东经济学院计算机科学与技术系山东大学计算机科学与技术学院 济南250014山东大学计算机科学与技术学院济南250061济南250061

【摘要】 讨论了构造可调整C2 连续的四次B啨zier插值曲线问题 .用四次B啨zier曲线构造C2 连续的插值曲线可提供额外的自由度 ,用于控制曲线的形状 .新方法构造辅助曲线用于描述B啨zier曲线的形状 .自由度由极小化样条曲线和辅助曲线的一阶导矢差的平方的积分确定 .讨论了C2 连续的四次B啨zier曲线需满足的连续性方程 .新方法的优点是曲线须满足的连续性方程是严格三对角占优势的、曲线的不连续点在给定的数据点处、曲线是局部可调整的 .此外 ,新方法具有保凸性 .最后以具体实例对新方法和现有三、四次样条函数方法做了比较 .

【Abstract】 The problem of constructing an adjustable C 2 quartic Bézier curve to interpolate a set of given data points is discussed. Constructing C 2 interpolation curve by quartic Bézier curve offers additional freedom degrees those can be used to adjust the shape of the curve. On each sub-interval, the quartic Bézier curve segment has one freedom degree that is used to adjust the shape of the segment. It is proven that for any freedom degrees, there is a C 2 quartic Bézier curve to interpolate the given data points. To make the quartic Bézier curve have the desired shape, the new method constructs an additional curve to describe the shape of the quartic Bézier curve. The freedom degrees are determined by minimizing the integral of the squared difference of the first derivatives of the Bézier curve and additional curve. If there are local irregularities on the portions of the quartic Bézier curve, the irregular portions could be locally removed by adjusting the corresponding freedom degrees and redefining the corresponding slope vectors at the data points. The continuity equations for constructing C 2 quartic Bézier curve are discussed. The properties of the new method are that (1) the equations that the quartic Bézier curve has to satisfy for being C 2 continuous are strictly row diagonally dominant; (2) the discontinuous points of the curve are at the given data points; (3) the curve is locally adjustable; (4) if the given data points are convex, the constructed quartic Bézier curve is convex. The comparison of the new method with cubic and quartic spline methods is included.

【基金】 国家自然科学基金 ( 60 173 0 5 2 );山东省重点自然科学基金 (Z2 0 0 1G0 1);教育部博士点基金 ( 2 0 0 2 0 42 2 0 3 0 )资助
  • 【文献出处】 计算机学报 ,Chinese Journal of Computers , 编辑部邮箱 ,2004年12期
  • 【分类号】TP391.41
  • 【被引频次】13
  • 【下载频次】126
节点文献中: 

本文链接的文献网络图示:

本文的引文网络