节点文献

带变异算子的粒子群优化算法

Particle Swarm Optimization with Mutation Operator

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李宁孙德宝岑翼刚邹彤

【Author】 Li Ning 1,2 Sun Debao 1 Cen Yigang 1 Zou Tong 11 (Department of Control Science&Engineering,Huazhong University of Science&Technology,Wuhan430074) 2 (School of Computer Science&Technology,Wuhan University of Technology,Wuhan430070)

【机构】 华中科技大学控制科学与工程系华中科技大学控制科学与工程系 武汉430074武汉理工大学计算机科学与技术学院 武汉430070武汉430074武汉430074

【摘要】 针对PSO算法存在易陷入局部最优点的缺点,该文提出了带变异算子的PSO算法。在算法搜索的后期引入变异算子,使算法摆脱后期易于陷入局部极优点的束缚,同时又保持前期搜索速度快的特性。通过对三个多峰的测试函数和一个问题空间为非凸集的实例所做的对比实验,表明改进的PSO算法增强了全局搜索能力,搜索成功率得到大大提高,克服了基本PSO易于收敛到局部最优点的缺点。

【Abstract】 Aiming at the shortcoming of PSO algorithm,that is,easily plunging into the local minimum,we opposed an advanced PSO algorithm with mutation operator.By adding the mutation operator to the algorithm in the later phase of convergence,the advanced algorithm can not only escape from the local minimum’s basin of attraction of the later phase,but also maintain the characteristic of fast speed in the early convergence phase.By the contrast experiments of three multimodal test functions and a example whose problem space is non-convex set,it has been proved that the advanced PSO algorithm can improve the global convergence ability,greatly enhance the rate of convergence and overcome the shortcoming of basic PSO algorithm,that is,easily plunging into the local minimum.

【基金】 航天技术创新基金项目
  • 【文献出处】 计算机工程与应用 ,Computer Engineering and Applications , 编辑部邮箱 ,2004年17期
  • 【分类号】TP301.6
  • 【被引频次】181
  • 【下载频次】1147
节点文献中: 

本文链接的文献网络图示:

本文的引文网络