节点文献

基于模糊小波网络的电力系统短期负荷预测方法

A method of power system short-term load forecasting based on fuzzy wavelet neural networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 汪新秀吴耀武熊信银黄阿强

【Author】 WANG Xin-xiu, WU Yao-wu, XIONG Xin-yin, HUANG A-qiang (Huazhong University of Science and Technology, Wuhan 430074, China )

【机构】 华中科技大学电气与电子工程学院华中科技大学电气与电子工程学院 湖北武汉430074湖北武汉430074湖北武汉430074

【摘要】 提出一种基于模糊小波网络的短期负荷预测模型。模糊小波网络结合了小波变换良好的时频局域化性质、模糊推理和神经网络的学习能力,因此函数逼近能力大大提高。模糊小波网络由一组模糊推理规则和若干小波子网络组成,其中模糊规则的结论部分与某一特定尺度的小波子网络相对应。在学习过程中通过同时调整小波基函数的平移因子和隶属度函数的形状,使得模糊小波网络的精度和泛化能力大大提高。实例计算表明,这种模型是切实可行的。

【Abstract】 A novel short-term load forecasting model based on fuzzy wavelet neural networks(FWN) is presented in this paper. Because FWN combines the time-frequency localization ability of wavelet, fuzzy inferring and the education character of ANN together,its ability to reach the global best results is greatly improved. The FWN includes a set of fuzzy rules and several sub-WNNs. Every sub-WNN, corresponding to a certain fuzzy rule, consists of wavelets with a specified dilation .By adjusting the translation parameters of the wavelets and the shape of membership functions, the accuracy and generalization capability of FWN can be remarkably improved. The calculation result shows that the presented model is effective.

  • 【分类号】TM715
  • 【被引频次】13
  • 【下载频次】222
节点文献中: 

本文链接的文献网络图示:

本文的引文网络