节点文献
应用BP神经网络预测固体在超临界流体中的溶解度
Prediction of Solid Solubility in Supercritical Fluid by Using BP Neural Newtork
【摘要】 构造Vogl快速算法误差反向传播(EBP)神经网络,应用该神经网络对若干固体在超临界流体中的溶解度进行预测,对21体系共612个数据点进行训练和预测,预测的总平均相对误差为4 02%,优于状态方程法所计算的结果。
【Abstract】 An error back propagation (EBP) artificial neural network with Vogl algorithm was constructed to predict the solubilities of different solids in supercritical fluids.612 experimental point for 21 systems had been trained and predicted,the predicting total average relative error is 4.02%.This method is superior to equation of state method.
- 【文献出处】 化学工业与工程 ,Chemical Industry and Engineering , 编辑部邮箱 ,2004年03期
- 【分类号】O645
- 【被引频次】10
- 【下载频次】107