节点文献
符号系统的2类跟踪及其应用
Two Types of Shadowing for Symbolic Systems and Their Applications
【摘要】 证明了符号动力系统具有Lipschitz跟踪性和极限跟踪性.作为其应用,借助拓扑共轭证明了Smale马蹄,二次映射在其双曲不变集上具有(相对C1小扰动一致的)极限跟踪性;借助Lipschitz共轭证明了线性的马蹄在其双曲不变集上具有Lipschitz跟踪性.
【Abstract】 To show that the symbolic systems have both the Lipschitz shadowing property and the limit shadowing property.As applications,prove that both the Smale’s horseshoes and the quadratic maps have the limit shadowing property on their hyperbolic invariant sets,and this property is also "uniform"with respect to C ~1-perturbation,also prove that the "linear" horseshoes have the Lipschitz shadowing property on their hyperbolic sets.
【关键词】 符号动力系统;
Lipschitz跟踪;
极限跟踪;
Smale马蹄;
【Key words】 symbolic system; Lipschitz shadowing property; limit shadowing property; Smale’s horseshoe;
【Key words】 symbolic system; Lipschitz shadowing property; limit shadowing property; Smale’s horseshoe;
【基金】 国家自然科学基金资助项目(10371030)
- 【文献出处】 河北师范大学学报 , 编辑部邮箱 ,2004年02期
- 【分类号】O193
- 【被引频次】8
- 【下载频次】72