节点文献

关于一类微分方程解的存在性

About the existence of positive solutions of a class differential equations

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈秀引赵娇云张蓓邢丽

【Author】 CHEN Xiu-yin~1, ZHAO Jiao-yun ~1 ZHANG Bei~(1,2),LI Xing~1 ( 1.School of Sciences, Hebei University of Technology,Tianjin 300130,China; 2.Shijiazhuang Army Academy,Shijiazhuang 050083,China)

【机构】 河北工业大学理学院河北工业大学理学院 天津300130天津300130天津300130石家庄陆军学院河北石家庄050083天津300130

【摘要】 通过构造Green函数,借助锥不动点定理讨论二阶常微分方程两点边值问题u″+u+f(t,u)=0,αu(0)-βu′(0)=0,γu(1)+δu′(1)=0正解的存在性。

【Abstract】 This paper study the existence of positive solutions of the differential equation u″+F(t,u)=0 with linear boundary conditions. The existence of at least one positive solution was shown if F is neither superlinear nor sublinear by a simple application of a Fixed Point Theorem in cones. In this paper, the second-order boundary value problem(BVP) was considered. u″+F(t,u)=0, 0<t<1,(1.1) αu(0)-βu′(0)=0, γu(1)+δu′(1)=0(1.2) The following conditions will be assumed throught: (a) F∈C([0,1]×[0,∞)), (b) α,β,γ,δ≥0 (c) 0≤arcsin(βα22)≤π2-1, 0≤arcsin(δγ22)≤π2-1. The BVP (1.1),(1.2) arises in many different areas of applied mathematics and physics. Additional existence results may be found in lienture[2-6].Our purpose here is to give an existence result for positive solutions to the BVP(1.1),(1.2)assuming that F is neither superlinear nor sublinear.

  • 【文献出处】 河北省科学院学报 ,Journal of The Hebei Academy of Sciences , 编辑部邮箱 ,2004年04期
  • 【分类号】O175
  • 【下载频次】89
节点文献中: 

本文链接的文献网络图示:

本文的引文网络