节点文献
一种改进的负关联规则挖掘算法
AN IMPROVED ALGORITHM FOR IDENTIFYING NEGATIVE ASSOCIATION RULES
【摘要】 负关联规则A→ B(或者 A→B, A→ B)描述的是项目之间的互斥关系,其与传统的关联规则有着同样重要的作用.然而,负关联规则和传统正关联规则的挖掘有很大不同,因为负关联规则隐藏在数量巨大的非频繁项集中.因此提出一种新的挖掘horn子句类型负关联规则的算法,并且实验证明是行之有效的.
【Abstract】 Negative association rules (NAR) catch mutually-exclusive correlations among items.They play important roles just as traditional association rules (TAR) do.For example,in stock market surveillance based on alert-logs,NARs detect which alerts are false.There are essential differences between mining TARs and NARs because NARs are hidden in infrequent itemsets.This paper presents a new algorithm for mining horn-clause-based negative association rules.To evaluate this algorithm,the authors have illustrated the efficiency by a group of experiments.
【关键词】 数据挖掘;
关联规则;
负关联规则;
兴趣度;
负项集;
【Key words】 data mining; association rules; negative association rules; interestingness; negative itemsets;
【Key words】 data mining; association rules; negative association rules; interestingness; negative itemsets;
【基金】 澳大利亚ARC基金资助项目(DP0343109)
- 【文献出处】 广西师范大学学报(自然科学版) ,Journal of Guangxi Normal University(Natural Science) , 编辑部邮箱 ,2004年02期
- 【分类号】TP311.1
- 【被引频次】21
- 【下载频次】214