节点文献
球空间具平行单位平均曲率向量的完备子流形
Submanifolds with parallel normalized mean curvature vector in a sphere
【摘要】 设M是n维完备黎曼流形,等距浸入(n+p)维单位球空间Sn+p,具有平行的单位平均曲率向量.则或者M局部地是Sn+p的一个(n+1)维全测地子流形Sn+1中的超曲面片;或者supSa≥n.其中supS是M的第二基本形式长度的平方的上确界.进一步,若n≤7,或者M整体地是Sn+p的一个(n+1)维全测地子流形Sn+1中的超曲面;或者supS(1+12sgn(p-2))>n.所得结果推广了具有平行的平均曲率向量的紧致子流形的结果.
【Abstract】 The complete submanifolds with parallel unit mean curvature vector in a sphere Sn+p(p>1) are studied, with some characteristics of these submanifolds obtained by using the generalized maximal principle. It is shown that if M is complete submanifolds with parallel mean curvature vector in Sn+p, then S=Sn+1, M is a hypersurface of a n+1 dimensional totally geodesic submanifolds Sn+1 of Sn+p, or sup Sa≥n. And it is further shown that if n≤7, then S=S(n+1), M is a hypersurface of a n+1 dimensional totally geodesic submanifolds Sn+1 of Sn+p, or sup S(1+12 sgn (p-2))>n.
【Key words】 mean curvature vector; the second fundamental form; complete submanifolds;
- 【文献出处】 广州大学学报(自然科学版) ,Journal of Guangzhou University(Natural Science Edition) , 编辑部邮箱 ,2004年04期
- 【分类号】O186.12
- 【被引频次】2
- 【下载频次】34