节点文献

基于粗糙集理论的值约简及规则提取

Data reduction and rule generation based on Rough set

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈欢

【Author】 CHEN Huan(College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350002, China)

【机构】 福州大学数学与计算机科学学院 福建福州 350002

【摘要】 结合粗糙集理论和分类规则支持度的概念,提出以值约简后实例的支持度尽可能大作为约简的目标,并给出一种值约简的算法.通过对实例分析表明,该算法能取得较好的效果.文中还讨论了规则集的性质,改进值约简算法得到一种基于粗糙集的规则挖掘算法.实验结果表明,该算法生成规则能够得到令人满意的分类正确率.

【Abstract】 In this dissertation rough set theory is combined with the notion of support measurement, a new object of value reduction is proposed, that is getting the rules which have maximal support measurement. Based on the forementioned ideal an algorithm about value reduction is proposed, experiment show it is practical. We also discuss the property of rule set in this paper. And then we improve value reduction method and based on Rough Theory a rule generation algorithm is presented. Experimental results show that this algorithm can effectively classify unknown data.

【关键词】 粗糙集值约简规则提取支持度
【Key words】 Rough setvalue reductionrule generationsupport measure
  • 【文献出处】 福州大学学报(自然科学版) ,Journal of Fuzhou University(Natural Sciences Edtion) , 编辑部邮箱 ,2004年04期
  • 【分类号】TP18
  • 【被引频次】21
  • 【下载频次】323
节点文献中: 

本文链接的文献网络图示:

本文的引文网络