节点文献

一种新的Adaboost快速训练算法

A Novel Fast Training Algorithm for Adaboost

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王海川张立明

【Author】 WANG Hai-chuan, ZHANG Li-ming (Department of Electronic Engineering, Fudan University, Shanghai 200433, China)

【机构】 复旦大学电子工程系复旦大学电子工程系 上海 200433上海 200433

【摘要】 提出了一种新的Adaboost快速训练方法,解决了基于Adaboost的人脸检测算法中结构复杂、训练非常耗时的问题.新方法从两方面提高训练速度:直接求解训练中Adaboost目标函数;在直接求解算法基础上,使用了双阈值简单分类器构造强分类器的Adaboost检测器结构.

【Abstract】 Recently the human face detection system based on Adaboost is successfully used in application areas because of its high speed and accepted detection rates, but building this system is very complex and its training time is extremely long. Numerous weaker classifiers need to be updated in the Adaboost during the training stage. A new fast training algorithm for Adaboost is proposed to solve this problem. Two methods are adopted to accelerate the training:(1) A method to directly solve the parameters of single weaker classifier is proposed, making the training speed is higher than probability method about 20 times and higher than artificial neural network thousands of times; (2) A double threshold decision for single weaker classifier is introduced, and the number of weaker classifiers in the Adaboost system is reduced, which simplifies the structure of the detection system. Based on the simplified detector, both the training time and the detecting time can be reduced.

【基金】 国家自然科学基金资助项目(60171037)
  • 【文献出处】 复旦学报(自然科学版) ,Journal of Fudan University , 编辑部邮箱 ,2004年01期
  • 【分类号】TP391.41
  • 【被引频次】100
  • 【下载频次】1651
节点文献中: 

本文链接的文献网络图示:

本文的引文网络