节点文献

一种新颖的最小属性约简模型

Novel model for minimal attributes reductions

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨明倪魏伟孙志挥

【Author】 Yang Ming 1,2 Ni Weiwei2 Sun Zhihui2 (1Department of Computer Science and Engineering, Anhui University of Technology and Science, Wuhu 241000, China) (2Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

【机构】 安徽工程科技学院计算机科学与工程系东南大学计算机科学与工程系东南大学计算机科学与工程系 芜湖241000 东南大学计算机科学与工程系南京210096南京210096

【摘要】 传统的基于粗集的属性约简须计算差别矩阵并生成大量的条件属性类 ,效率低 ,且很多算法还不完备 .为此 ,本文引入分类关联规则和相容分类关联规则的概念 ,给出基于分类关联规则的求解下近似和正区域的等价方法 ,从而提出基于分类关联规则的属性约简模型和算法 ,该模型将属性约简问题转化为求解一类特殊的分类关联规则集的问题 ,因而使得相应的算法可有效地改进属性约简挖掘效率 ,克服传统算法依赖于主存的限制 ,为属性约简提供了一种新的框架 .理论分析表明该算法是有效且可行的 .

【Abstract】 Conventional algorithms for attributes reduction based on rough sets need to compute the time-consuming discernibility matrix and generate lots of attribute classes, thus they are of low efficiency. Moreover, many algorithms are incomplete. In this paper, the concepts of classified association rules and compatible classified association rules are introduced, and equivalent models based on classified association rules for computing lower approximation and positive region are proposed. Furthermore, this paper gives a novel model and a complete algorithm —— EAMAR (efficient algorithm for minimal attributes reduction) for attributes reduction. The model only needs to mine a set of special classified association rules instead of generating lots of attribute classes, so it can effectively overcome the limitation of main memory and solve the problem of time consuming. Therefore, EAMAR provides a new framework for attributes reduction. Theoretical analysis results show that EAMAR is effective and efficient.

【基金】 国家自然科学基金资助项目 (70 3 710 15 );安徽省自然科学基金资助项目 (0 3 0 42 2 0 5 ) .
  • 【文献出处】 东南大学学报(自然科学版) ,Journal of Southeast University (Natural Science Edition) , 编辑部邮箱 ,2004年05期
  • 【分类号】TP301.6
  • 【被引频次】8
  • 【下载频次】161
节点文献中: 

本文链接的文献网络图示:

本文的引文网络