节点文献

基于神经网络与专家系统的汽轮发电机组故障诊断系统

A TURBINE-GENERATOR UNITS FAULT DIAGNOSIS SYSTEM BASED ON INTEGRATION OF FUZZY NEURAL NETWORK AND EXPERT SYSTEM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 于刚高正平徐治皋姚学忠

【Author】 Yu Gang , Gao Zhengping , Xu Zhigao , Yao Xuezhong (Southeast University, Nanjing 210096, China) (Luohe Power Plant, Huainan 232008, China)

【机构】 东南大学动力工程系洛河发电厂 江苏省 南京市 210096江苏省 南京市 210096安徽省 淮南市 232008

【摘要】 根据模糊神经网络和专家系统的特点,建立了模糊神经网络与专家系统相结合的汽轮发电机组故障诊断系统。系统采用模糊隶属度函数表示难以准确描述的领域专家知识;推理过程中,采用神经网络进行前向推理,并参考神经网络的输出,用专家系统进行反向推理,结合了神经网络求解迅速和专家系统解释清晰的优点,并提高了系统诊断能力;最后,采用信息融合方法处理冗余的诊断结果,提高了系统的综合诊断性能。

【Abstract】 A fault diagnosis system based on integration of fuzzy neural network and expert system is developed for turbine-generator units. Fuzzy membership functions are used to deal with the uncertainty or indistinction of the faults and rules knowledge. Neural network is used for forward reasoning and expert system is used for backward reasoning, with referencing the results of the neural network. The cooperation of the two means can lead to fast calculation, plain explanation and good diagnosis ability. The diagnosis results are synthesized by information fusion method to improve the performance of the system.

  • 【文献出处】 电力系统自动化 ,Automation of Electric Power Systems , 编辑部邮箱 ,2004年04期
  • 【分类号】TM311
  • 【被引频次】48
  • 【下载频次】478
节点文献中: 

本文链接的文献网络图示:

本文的引文网络