节点文献

实验数据处理中曲线拟合方法探讨

Discussion on methods of curve fitting in experimental data processing

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 乔立山王玉兰曾锦光

【Author】 QIAO Li-shan~1, WANG Yu-lan~1, ZENG Jin-guang~2 (1.Department of Information and Computing Science, Chengdu University of Technology, China; 2. Department of Information Management, Ningbo University, Ningbo, China)

【机构】 成都理工大学信息与计算科学系宁波大学信息管理系 成都610059成都610059

【摘要】 曲线拟合是实验数据处理的基本方法之一。将曲线拟合方法归结为有理论模型和无理论模型两类,据此,对曲线拟合的一般思路和重要方法进行了讨论。对两类方法进行了比较,并将它们联合用于对材料流变状态的速率-微分型本构模型的曲线拟合。

【Abstract】 Curve fitting is one of the basic methods in experimental data processing. In this paper, the methods of curve fitting are classified by existence of theoretic model. According to the above (classification), the paper discusses the general and important methods of curve fitting. Then it compares the two species of method and addresses a new method based on neural networks and least square. Finally, the new method is used for curve fitting of rheologic modelvelocity-differential constitutive relations.

【基金】 国家973项目(G1999022511)
  • 【文献出处】 成都理工大学学报(自然科学版) ,Journal of Chengdu University of Technology(Science & Technology Edition) , 编辑部邮箱 ,2004年01期
  • 【分类号】TP391.41
  • 【被引频次】187
  • 【下载频次】4861
节点文献中: 

本文链接的文献网络图示:

本文的引文网络