节点文献
基于广义回归神经网络的时间序列预测研究
General Regression Neural Network Based Prediction of Time Series
【摘要】 介绍了广义回归神经网络的基本理论 ,提出了应用 BIC准则确定输入神经元数目的方法 ,将其应用于大型旋转机械振动状态时间序列的单步和多步预测 ,与传统的采用误差反向传播学习算法的三层前馈感知器网络 (BP神经网络 )的预测结果进行对比。结果表明 ,该网络的预测性能优于后者 ,即使样本数据稀少 ,也能获得满意的预测结果
【Abstract】 The basics of a general regression neural network(GRNN) is introduced. The BIC method generalized from the Auto Regression model is presented to determine the number of input neurons. The GRNN is applied to the single step and multi step ahead prediction of a time series of the vibration of a rotating machine,and its performance is compared with that of a 3 layer perceptrons network with error back propagation training algorithm(BPNN). The comparison indicates that the GRNN is superior in prediction of a time series to the BPNN,and a satisfactory prediction can be still made by the GRNN even with sparse sample data.
【Key words】 prediction time series neural network general regression neural network;
- 【文献出处】 振动、测试与诊断 ,Journal of Vibration,Measurement & Diagnosis , 编辑部邮箱 ,2003年02期
- 【分类号】TP13
- 【被引频次】119
- 【下载频次】1017