节点文献

遗传算法在决策表连续属性离散化中的应用研究

The Discretization of Continuous Attributes Using Genetic Algorithms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 赵卫东戴伟辉蔡斌

【Author】 ZHAO Wei\|dong, DAI Wei\|hui, CAI Bin(School of Management, Fudan University, Shanghai 200433, China)

【机构】 复旦大学管理学院复旦大学管理学院 上海200433上海200433上海200433

【摘要】 连续属性的离散化是压缩数据和简化分析的重要手段 ,也是模式识别、机器学习和粗集分析等领域研究的难点 .目前已出现多种离散方法 ,存在的主要问题是对离散效果影响较大的侯选分割点集选择带有较强的主观性 .最优离散化是 NP-困难问题 ,大多数离散化算法采用的启发式也难以得到较满意的离散效果 .基于粗集理论 ,探讨了上述问题 ,把分割点的优选问题转化为 0 -1整数规划 ,并提出一种用实数编码的遗传算法来计算最优分割点集

【Abstract】 The discretization of continuous attributes is an important method for compressing data and simplifying analysis, which is of the focuses in the domains of pattern recognition, machine learning and rough sets. Some discretization algorithms have been used such as MD, discretization based on entropy but there exist disadvantages in them. For example, the choice of initial set of cut dots is hard to be determined. The optimal discretization has been proved to be NP\|hard. Heuristics used by most algorithms usually give local minima though results sometimes are satisfactory. Based on the rough set theory, the problems mentioned above are firstly discussed in this paper. Then we transform the discretization of continuous attributes into 0\|1\|integer programming, which can be solved successfully by existent software such as lindo. Furthermore, a genetic algorithm using decimal encoding is proposed to compute the optimal discretization.

  • 【文献出处】 系统工程理论与实践 ,Systems Engineering-theory & Practice , 编辑部邮箱 ,2003年01期
  • 【分类号】TP301.6
  • 【被引频次】12
  • 【下载频次】269
节点文献中: 

本文链接的文献网络图示:

本文的引文网络