节点文献

基于独立分量分析的脑电消噪与特征提取

Removing Artifacts and Extracting Patterns in EEG Based on ICA

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭晓静吴小培张道信孔敏冯焕清

【Author】 GUO Xiao-jing1, WU Xiao-pei1,2, ZHANG Dao-xin1, KONG Min1, FENG Huan-qing2 (1 The Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, of Anhui University, Hefei 230039, China; 2 School of Information Science and Technology, USTC, Hefei 230026, China)

【机构】 安徽大学计算智能与信息处理教育部重点实验室中国科技大学电子科学与技术系 合肥230039合肥2300392中国科技大学电子科学与技术系合肥230026合肥230039合肥230026

【摘要】 先简要介绍了独立分量分析的基本思想及算法,再将其应用于脑电信号的消噪和思维脑电的特征提取两个方面。实验结果表明:ICA可以将脑电信号中包含的心电(ECG)、眼电(EOG)等多种干扰信号成功地分离出来。另外,通过使用ICA方法对进行不同心理作业的脑电信号进行分析处理后,发现了与心理作业相对应的脑电独立分量特征,这些稳定的独立分量特征将可以为心理作业的分类和脑-机接口技术(BCI)提供新的实现方法.

【Abstract】 Recently, blind source separation (BSS) by ICA has received attention because of its potential application in many signal processing fields. In this paper, ICA is applied to the EEG signal analysis. One side, our results show that ICA can effectively detect, separate and remove a wide variety of artifacts from EEG recordings. On the other, the ICA algorithm is used to the pattern extraction of mental EEG signals from different mental tasks. By studying the EEG independent sources and their projection on human scalp, we can find that some steady independent components always appear when the subject repeats the same mental tasks. This result will provide us with a promising method in the classification of mental tasks and the research on the Brain-Computer Interface (BCI) technology.

【基金】 国家自然科学基金项目(60271024;60071023); 安徽省自然科学基金项目(0043214)资助
  • 【文献出处】 系统仿真学报 ,Acta Simulata Systematica Sinica , 编辑部邮箱 ,2003年02期
  • 【分类号】R310;TP3
  • 【被引频次】50
  • 【下载频次】871
节点文献中: 

本文链接的文献网络图示:

本文的引文网络