节点文献

基于神经网络的无源多传感器属性数据关联

Multiple Passive Sensors Feature Data Association Based on Neural Networks

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐敬王秀坤胡家升

【Author】 XU Jing1, 2, WANG Xiu-kun1, HU Jia-sheng1 (1Dalian University of Technology, Dalian 116024, China; 2Dalian Naval Academy, Dalian 116018, China)

【机构】 大连理工大学大连理工大学 大连116024海军大连舰艇学院大连116018大连116024大连116024

【摘要】 采用引入动量项、自适应调整步长、Levenberg-Marquardt优化方法对基本的BP神经网络进行改进,以提高学习速度,改进的BP神经网络学习算法用于对无源多传感器获得的雷达辐射源参数进行属性数据关联,能够自适应地调整阈值,即根据训练数据调整关联的门限值,与确定门限的属性关联算法相比,有着很高的关联正确率。

【Abstract】 An introduced momentum item, adaptive step adjust and Levenberg-Marquardt optimal methods are used to improve the basic BP neural networks, and training speed is highly developed as well. The improved BP neural networks learning algorithm is presented to associate the feature data of radar emitters received by multiple passive sensors. It can adapively adjust the threshold, i.e. adjust the feature associate threshold according to training data. Compared with fixed threshold feature association algorithm, it shows a high association rate in feature association.

【基金】 国防九五重点资助课题
  • 【文献出处】 系统仿真学报 ,Acta Simulata Systematica Sinica , 编辑部邮箱 ,2003年01期
  • 【分类号】TP212
  • 【被引频次】18
  • 【下载频次】163
节点文献中: 

本文链接的文献网络图示:

本文的引文网络