节点文献
线性变换下Grbner基的转换问题
Properties of Grbner Basis Under linear Map
【摘要】 Grbner基是符号计算中的基本工具之一,在许多实际问题中需要进行Grbner基的转换。讨论了经变元的线性变换φ:k[x1,…,xn]→k[x1,…,xn]后Grbner基的转换问题。证明了Grbner基在这种变换下保持基的性质。并证明了当变换矩阵为可经过行交换化为非退化上三角阵且变换后k[x1,…,xn]的序与原有序相容时,Grbner基经变换后仍保持Grbner基性质。
【Abstract】 Grobner basis is one of basic tools in symbolic computation, and the transformation of Grobner basis is needed in many practical questions. The transformation question of Grobner basis by linear map: φX→AX is considered. First, it is proved that Grobner basis keep characters of base through linear map. Then it is proved that Grobner basis keeps characters of Grobner basis through linear map if the matrix A is a non-degenerative upper-triangular matrix by changing its rows and the linear map φ is compatible with the order.
- 【文献出处】 北京电子科技学院学报 ,Journal of Beijing Electrenic Science and Technology Institute , 编辑部邮箱 ,2003年01期
- 【分类号】O174.14
- 【被引频次】2
- 【下载频次】45