节点文献

基于GASA混合优化策略的双层规划模型求解算法研究

GASA HYBRID OPTIMIZATION STRATEGY FOR BILEVEL PROGRAMMING MODELS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘伟铭姜山

【Author】 Liu Weiming Jiang Shan(Changsha Communications University)

【机构】 长沙交通学院长沙交通学院

【摘要】 本文提出用遗传—模拟退火算法(GASA)混合优化策略来求解双层规划模型。混合优化策略结合了遗传算法的并行结构和模拟退火算法的概率突跳性,提高了找到全局最优解的可靠性和计算效率。数值模拟实验表明算法性能良好,GASA混合优化策略求得全局最优解时的进化代数比单一的遗传算法减少约35%,比模拟退火算法的迭代次数减少约50%。

【Abstract】 The author proposes GASA hybrid optimization strategy for the bilevel programming models. The proposed strategy is based on single genetic algorithm and simulated annealing algorithm and hence it combines the parallel searching structure of genetic algorithm with the probabilistic jumping property of simulated annealing algorithm, as a result, the GASA hybrid optimization strategy is much more efficient and more likely to find the global optimum, which is fully showed by the performance of the strategy using numerical example. In our numerical example, to find the global optimum, the evolutionary generations of GASA is saved about 35% than those of single GA, 50% than those of SA.

  • 【文献出处】 土木工程学报 ,China Civil Engineering Journal , 编辑部邮箱 ,2003年07期
  • 【分类号】U491.227
  • 【被引频次】47
  • 【下载频次】403
节点文献中: 

本文链接的文献网络图示:

本文的引文网络