节点文献
Heisenberg群上的Hardy不等式与Pohozaev恒等式
Hardy’s Inequalities and Pohozaev’s Identities on the Heisenberg Group
【摘要】 本文对Heisenberg群Hn上的p次Laplace算子ΔHn,p构造了基本解,建立了关于基向量场的Picone恒等式,进而建立了Hardy不等式.利用向量场的非交换运算导出了Pohozaev恒等式.这些结果均推广了Folland,Garofalo-Lanconelli已有的结果,而方法则有所改进.最后给出了在非线性次椭圆方程中的应用.
【Abstract】 The aim of this paper is to construct the fundamental solution of p-sub-Laplacian on the Heisenberg group and establish Hardy’s inequalities by proving Pi-cone’s identity on vector fields. Furthermore, Pohozaev’s identities are given by using the noncommutative properties of vector fields. These results generalize those by Fol-land, Garofalo-Lanconelli, and some methods in this paper are new.
【关键词】 基本解;
Hardy不等式;
Picone恒等式;
Pohozaev恒等式;
【Key words】 Fundamental solution; Hardy’s inequality; Picone’s identity; Pohozaev’s identity;
【Key words】 Fundamental solution; Hardy’s inequality; Picone’s identity; Pohozaev’s identity;
【基金】 国家自然科学基金资助项目(19971068)
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,2003年02期
- 【分类号】O177;O178
- 【被引频次】10
- 【下载频次】161