节点文献

关于奇异非线性多调和方程的正整体解

On Positive Entire Solutions to Singular Nonlinear Poly-Harmonic Equations in R~2

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴炯圻

【Author】 Wu Jiongqi(Zhangzhou Teachers’ College, Zhangzhou 363000)

【机构】 漳州师范学院数学系 漳州363000

【摘要】 该文主要研究形如Δ( (Δnu) p- 1*) =f( | x| ,u,| u| ) u-β,  x∈ R2的奇异非线性多调和方程在 R2 上的正整体解 ,此处 p>1 ,β≥ 0是常数 ,n是自然数 ,f:R+ × R+×R+ →R+ 是一个连续函数 ,ξα*:=| ξ|α- 1ξ,ξ∈R,α>0 .证明了这种解 u必无界且其渐进阶 (当n→∞时 u作为无穷大量的阶 )不低于 | x| 2 nlog| x| ,给出了该方程具有无穷多个其渐进阶刚好为 | x| 2 nlog| x|的正整体解的充分与充分必要条件 .这些结论可以推广到更一般的方程中去

【Abstract】 In this paper, two dimensional singular nonlinear poly harmonic equation of the form Δ((Δ\+nu)\+\{p-1*\}) = f(|x|, u, |u|)u\+\{-β\},\ x∈R\+2 is considered, where p>1, β≥0, n is an integer (n≥1),ξ\+\{α*\}:=|ξ|\+\{α-1\}ξ,ξ∈R,α>0. and f: \-+×R\-+×\-+→R\-+ is a continuous function. It is shown that any positive radially symmetric entire solution grows at least as fast as positive constant multiples of |x|\+\{2n\}(\%log\%|x|)\+\{1/(p-1)\} as |x|→∞ . It is given that some sufficient conditions and necessary conditions for the existence of infinitely many positive symmetric entire solutions which are asymptotic to positive constant multiples of |x|\+\{2n\}( log |x|)\+\{1/(p-1)\} as |x|→∞ . The results can be extended to certain equations of more general form, e.g., Δ((Δ\+nu)\+\{p-1*\})=f(|x|, u, |u|,|u\+2u|,\:,|u|\+\{2n-1\})u\+\{-β\},\ x∈R\+2.

【基金】 福建省自然科学基金资助项目 ( F0 0 0 1 8);福建省教育厅资助项目 ( JA0 2 2 47)
  • 【文献出处】 数学物理学报 ,Acta Mathematiea Scientia , 编辑部邮箱 ,2003年05期
  • 【分类号】O193
  • 【被引频次】12
  • 【下载频次】41
节点文献中: 

本文链接的文献网络图示:

本文的引文网络