节点文献

机械噪声故障特征提取的盲分离法与小波提纯法

Acoustic Feature Extraction of Rotating Machines Using Blind Source Separation and Wavelet Analysis

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 吴军彪陈进钟平伍星蔡晓平

【Author】 WU Jun biao, CHEN Jin, ZHONG Ping, WU Xing, CAI Xiao ping (State Key Lab. of Vibration, Shock & Noise, Shanghai Jiaotong Univ., Shanghai 200030, China)

【机构】 上海交通大学振动、冲击、噪声国家重点实验室上海交通大学振动、冲击、噪声国家重点实验室 上海200030上海200030上海200030

【摘要】 机械噪声故障特征提取的难点在于观测信号的信噪比较小 .将盲分离技术引入噪声故障特征提取 ,通过声源信号的相互独立性质 ,使用二阶盲分离算法从观测的混合信号中提取独立声源信号 ,然后 ,通过随机噪声与有效信号在多尺度空间中模极大值的不同传播特性 ,使用小波模极大值法提取有效信号特征 .该算法不仅消除了临近机器或部件辐射噪声的干扰 ,还消除了随机噪声的干扰 ,有效提取了机械噪声故障特征 .电动机噪声特征提取实验验证了上述算法的有效性

【Abstract】 In acoustic monitoring, the observed signal is usually the mixture of sound signals of all machines and it has a very low signal to noise ratio. To eliminate the mutual interference of sound signals, the blind source separation was used to recover the sound signals of independent sources. The second order blind separation algorithm was proposed to reconstruct the spectrum of the monitored system. Then, the wavelet analysis was introduced and the maximum modulus method was used to remove the interference of random noise. The signal to noise ratio of monitored system is significantly enhanced via the proposed methods. The acoustic features can be obtained from the purified signal easily. The experiment results made in semi anechoic chamber demonstrate the effectiveness of the presented methods.

【基金】 国家自然科学基金 (5 0 0 75 0 5 2 );北京市光电转换装置与噪声信号处理技术实验室资助项目
  • 【文献出处】 上海交通大学学报 ,Journal of Shanghai Jiaotong University , 编辑部邮箱 ,2003年05期
  • 【分类号】TP277
  • 【被引频次】50
  • 【下载频次】551
节点文献中: 

本文链接的文献网络图示:

本文的引文网络