节点文献
线性代数方程组行处理法分治策略
Dividing-Conquering Strategy with Row Action Method for Systems of Linear Algebraic Equations
【摘要】 利用行处理法和分治策略给出一种求解任意线性代数方程组AX=b(A∈Rn×m)的迭代分治算法,证明算法对任意的相容性线性代数方程组收敛,并探讨算法的加速技术及其在线性代数方程组MIMD并行迭代算法研究中的应用前景.
【Abstract】 By using the row action method and the dividingconquering strategy, this paper puts forward an iterative dividingconquering algorithm to solve arbitrary systems of linear algebraic equations AX=b(A∈Rn×m). It is proved that the algorithm is convergent for arbitrary consistent systems of linear algebraic equation. The acceleration techniques of the algorithm and its prospective application to MIMD parallel iterative algorithm for the system of linear algebraic equations are discussed.
【关键词】 线性代数方程组;
行处理法;
分治策略;
MIMD并行迭代算法;
【Key words】 System of linear algebraic equations; Row action method; Dividing-conquering strategy; MIMD parallel iterative algorithm;
【Key words】 System of linear algebraic equations; Row action method; Dividing-conquering strategy; MIMD parallel iterative algorithm;
【基金】 中国工程物理研究院科学技术基金资助项目(20020656)
- 【文献出处】 四川师范大学学报(自然科学版) ,Journal of Sichuan Normal University(Natural Science) , 编辑部邮箱 ,2003年05期
- 【分类号】O241.6
- 【被引频次】6
- 【下载频次】91