节点文献

一种基于正则化方法的准最佳图像复原技术

A Close-to-Optimal Image Restoration Technique Based on Regularization Method

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曾三友康立山丁立新黄元江

【Author】 ZENG San-You1,2+, KANG Li-Shan1,3, DING Li-Xin3, HUANG Yuan-Jiang2 1(Department of Computer Science and Technology, China University of Geosciences, Wuhan 430074, China) 2(Department of Computer Science, Zhuzhou Institute of Technology, Zhuzhou 412008, China) 3(State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China)

【机构】 中国地质大学计算机科学与技术系武汉大学软件工程国家重点实验室株洲工学院计算机系 湖北武汉430072株洲工学院计算机系湖南株洲412008湖北武汉430072武汉大学软件工程国家重点实验室湖北武汉430072湖南株洲412008

【摘要】 提出一种基于正则化方法的高效图像复原技术.正则化残量的能量越小,则恢复效果越好,基于此,利用小波变换定性地分析如何选取正则化算子,利用随机理论得到正则化残量的能量期望值,通过最小化这个期望模型确定正则化参数,从而得到正则化图像.定性分析表明,在通常情况下应选取低阻高通的正则化算子.实验结果表明,该恢复技术比传统方法的恢复性能要好,恢复效果接近最佳且性能稳定.

【Abstract】 A technique based on regularization method and restores image to close-to-optimal is proposed in this paper. The less the energy of the regularized residue, the better the image restoration. Based on this idea, wavelet transform is employed to choose regularization operator qualitatively, and stochastic theory is used to calculate the expectation of the energy, by minimizing the expectation to determine regularization parameter. Qualitative analysis concludes that the regularization operator should be low-stop and high-pass, and the experimental results show that the performances of this method are better than the traditional methods and yields steadily close-to-optimal restoration.

【基金】 Supported by the National Natural Science Foundation of China under Grant Nos.60073043; 70071042;60133010; 60204001 (国家自然科学基金); the Scientific Research Fund of Hunan Provincial Education Department of China under Grant No.02C640 (湖南省教育
  • 【文献出处】 软件学报 ,Journal of Software , 编辑部邮箱 ,2003年03期
  • 【分类号】TP391.41
  • 【被引频次】49
  • 【下载频次】571
节点文献中: 

本文链接的文献网络图示:

本文的引文网络