节点文献
采用改进的PCA算法测量两相流相浓度
Principal component analysis method for two-phase flow concentration measurements
【摘要】 针对现有图像重建算法以定性为主,所引起的相浓度参数测量精度有限的问题,该文提出了在对电容层析层像系统传感器测量数据进行分析时,采用主成份分析(PCA)结合人工神经网络反向传播(BP)算法,通过训练神经网络,得到从电容测量值到相浓度之间的对应关系。样本测试可以得到很好的结果,网络输出浓度与设定浓度之差可以控制在±5%范围之内。证明该方法测量两相流相浓度参数是可行的。
【Abstract】 Electrical capacitance tomography (ECT) is a technique for twophase flow measuring. The phase concentration can be extracted from reconstructed tomograms. For the nonlinearity and illposedness of ECT image reconstruction, the accuracy of phase concentration estimated from image reconstruction is limited. This paper introduced a method based on principal component analysis combined with artificial neural networks for twophase flow concentration measurements. The phase concentration was determined from the raw capacitances data. Simulation results show that the error in the estimated concentration is within ±5%.
【Key words】 two-phase flow; electrical capacitance tomography; principal component analysis; artificial neural networks; back propagation algorithm;
- 【文献出处】 清华大学学报(自然科学版) ,Journal of Tsinghua University(Science and Technology) , 编辑部邮箱 ,2003年03期
- 【分类号】TP183
- 【被引频次】24
- 【下载频次】190