节点文献
高阶抛物型方程的一族高精度恒稳差分格式
A FAMILY OF ABSOLUTELY STABLE DIFFERENCE SCHEMES OF HIGH ACCURACY FOR SOLVING HIGH ORDER PARABALIC EQUATION
【摘要】 <正> 本文考虑如下的高阶(2m阶)抛物型方程周期初值问题 φu/φt=(-1)m+1φ2mu/φx2m(-∞<x<∞,0≤t≤T) u(x+L,t)=u(x,t)(-∞<x<∞,0≤t≤T) (1) u(x,0)=f(x) (-∞<x<∞)
【Abstract】 A family of three-layer implicit difference Schemes of high accuracy with two parameters for solving high order parabolic equation (where m is positive integers) are constructed. In the special case α =1/2、β= 0, We obtain a two-layer difference scheme. These schemes are proved to be absolutely stable for arbiratily chosen non-negative parameters, And the order of the truncation error is O((Δt)2 +(Δx)6). They are shown by numerical examples to be effective, and practice consistant with theoretical analysis.
【关键词】 高阶抛物型方程;
绝对稳定;
高精度;
差分格式;
【Key words】 high order parabolic equation; absolutely stable; high ac-curacy; difference scheme.;
【Key words】 high order parabolic equation; absolutely stable; high ac-curacy; difference scheme.;
- 【文献出处】 计算数学 ,Mathematica Numerica Sinica , 编辑部邮箱 ,2003年03期
- 【分类号】O241.8
- 【被引频次】13
- 【下载频次】85