节点文献

基于混合遗传算法的时滞和参数的在线辨识

An Hybrid GA Algorithm Based for On-line Identification of time-varying time-delays and parameters

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孟令柏陈义俊申东日

【Author】 MENG Ling-bai,CHEN Yi-jun,SHEN Dong-ri(LiaoNing University of Petroleum and chemical technology,Fushun Liaoning 113001,China)

【机构】 辽宁石油化工大学信息工程学院辽宁石油化工大学信息工程学院 辽宁抚顺113001辽宁抚顺113001辽宁抚顺113001

【摘要】 针对遗传算法应用于时变时滞和参数在线辨识时 ,存在无法兼顾收敛速度与辨识精度的缺点 ,提出一种遗传算法和单神经元有机结合的混合遗传算法。利用GA的全局最优性在整个空间搜索可能的极值 ,而用单神经元的误差梯度下降特性在极值点附近快速搜索 ,从而达到全局最优与快速搜索的有机结合 ,提高了收敛速度和辨识精度。并对混合遗传算法进行了改进 ,使之更适用于在线辨识。仿真结果表明 ,改进的混合遗传算法用于在线辨识有效且实用。

【Abstract】 To solve the contradiction between the convergent speed and identifying accuracy at the application of genetic algorithm (GA) to on-line system identification, an improved hybrid algorithm, in which neuron’s local fast search and GA’s global convergent characteristic are combined perfectly, is proposed. In particular, the global convergent feature of the GA is used to find the possible extremums in the whole area, and the neuron with the feature of error descend in the direction of grads is used to fast search about the extremums. Thus, the better combination of global convergence and fast search is obtained. Besides, the accuracy of the on-line identification is greatly enhanced. Moreover, several improved measures are taken to meet the command of the on-line identification. Simulation results show that the improved hybrid algorithm is efficient and useable for on-line system identification.

  • 【文献出处】 计算机仿真 ,Computer Simulation , 编辑部邮箱 ,2003年11期
  • 【分类号】TP18
  • 【被引频次】6
  • 【下载频次】103
节点文献中: 

本文链接的文献网络图示:

本文的引文网络