节点文献

Rough集高效算法的研究

Research on Efficient Algorithms for Rough Set Methods

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘少辉盛秋戬吴斌史忠植胡斐

【Author】 LIU Shao-Hui 1) SHENG Qiu-Jian 1) WU Bin 1,2) SHI Zhong-Zhi 1) HU Fei 3) 1) (Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080) 2) (School of Computer Science and Technology, Beijing University of Post and Telecommunication,Beijing 100876) 3) (Department of Physical Education Management, Shanghai Institute of Phisical Education, Shanghai 200438)

【机构】 中国科学院计算技术研究所智能信息处理重点实验室上海体育学院体育管理系 北京100080北京100080北京100080北京邮电大学计算机科学与技术学院北京100876上海200438

【摘要】 深入分析了现有Rough集算法低效性的根源 ,围绕不可区分关系和正区域两个核心概念 ,研究了不可区分关系的性质 ,给出并证明了正区域的一种等价计算方法 ,从而得出高效的Rough集基本算法 ;随后 ,分析了正区域的渐增式计算 ,并给出了一种完备的属性约简算法 .理论分析和实验结果表明 ,该约简算法在效率上较现有的算法有显著提高 .

【Abstract】 This paper makes an deep study of the reasons of the algorithms’ inefficiency, mainly focuses on two important concepts: indiscernibility relation and positive region, analyzes the properties of indiscernibility relation, proposes and proves an equivalent and efficient method for computing positive region. Thus some efficient basic algorithms for rough set methods are introduced with a detailed analysis of the time complexity and comparison with the existing algorithms. Furthermore, this paper researches the incremental computing of positive region. Based on the above results, a complete algorithm for the reduction of attributes is designed. Its completeness is proved. In addition, its time complexity and space complexity are analyzed in detail. In order to test the efficiency of the algorithm, some experiments are made on the data sets in UCI machine learning repository. Theoretical analysis and experimental results show that the reduction algorithm is more efficient than those existing algorithms.

【关键词】 Rough集上近似下近似约简
【Key words】 rough setupper approximationlower approximationcorereduct
【基金】 国家自然科学基金 (60 173 0 17,60 0 73 0 19,90 10 40 2 1);北京市自然科学基金重点项目 (4 0 110 0 3 )资助
  • 【文献出处】 计算机学报 ,Chinese Journal of Computers , 编辑部邮箱 ,2003年05期
  • 【分类号】TP18
  • 【被引频次】548
  • 【下载频次】1151
节点文献中: 

本文链接的文献网络图示:

本文的引文网络