节点文献

基于离散正交小波变换的红外图像去噪方法

Method of infrared image denoising based on discrete orthogonal wavelet transform

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张长江付梦印金梅

【Author】 ZHANG Chang\|jiang1, FU Meng\|yin2, JIN Mei2(1.Department of Automatic Control, School of Information Science andTechnology, Beijing Institute of Technology, Beijing 100081, China;2.School of Electric Information Engineering,Daqing Petroleum Institute, Daqing 163318, China)\;

【机构】 北京理工大学信息科学技术学院自动控制系大庆石油学院电气信息工程学院大庆石油学院电气信息工程学院 北京 100081黑龙江大庆 163318黑龙江大庆 163318

【摘要】 提出红外图像去噪方法,将小波变换与广义交叉确认原理相结合,在噪声方差未知的前提下,只利用红外图像的输入数据就可以确定所要求的渐近最优阈值。对红外图像进行离散正交小波变换后,分别对各个分解层的高频子带利用所提出的方法进行迭代去噪,使各个高频子带分别收敛于其最大信噪比。实验结果表明,该方法在有效地去除噪声的同时,能较好地保持红外图像的细节信息。算法在性能指标和视觉质量上均优于Donoho提出的小波阈值去噪方法、Johnstone提出经过调整的小波阈值法和传统的中值滤波法。

【Abstract】 A kind of infrared image threshold denoising method is given. It combines wavelet transform with generalized cross validation. An asymptotically optimal threshold can be determined, without knowing the variance of noise, only using the known input data. After making discrete orthogonal wavelet transform to an infrared image, denoising is done in the high frequency subbands of each decomposition level respectively, so that the maximum signal\|noise\|ratio can be obtained in the high frequency subbands respectively. According to the experimental result ,the given algorithm can reduce the noise of infrared image effectively ,while it also keeps the detail information of infrared image well. As to performance and visual quality, the algorithm is better than the wavelet thresholding given by Donoho, the modified wavelet thresholding given by Johnstone and the traditional median value filtering method.

【基金】 国防兵器预研基金资助项目
  • 【文献出处】 红外与激光工程 ,Infrared and Laser Engineering , 编辑部邮箱 ,2003年04期
  • 【分类号】TP391.41
  • 【被引频次】17
  • 【下载频次】268
节点文献中: 

本文链接的文献网络图示:

本文的引文网络