节点文献

在R~N上的拟线性椭圆型方程正解的存在性

Existence of Positive Solutions for Quasilinear Elliptic Equations in R~N

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 傅红卓姚仰新沈尧天

【Author】 Fu Hong_zhuo Yao Yang_xin Shen Yao_tian(Dept. of Applied Mathematics, South China Univ. of Tech., Guangzhou 510640, Chi na)

【机构】 华南理工大学应用数学系华南理工大学应用数学系 广东广州510640广东广州510640广东广州510640

【摘要】 研究了以下非线性Dirichlet问题在一定条件下的弱正解的存在性 :-div(| u|p- 2 u) +a(x)up- 1=h(x)uq+up - 1,x∈RN,u≥ 0 ,u 0 ,∫RN a(x)·|u|pdx <+∞ .其中 ,a :RN →R是连续非负函数 ,h :RN →R是某类可积函数 ,2≤ p <N且 p2 ≤N ,0 <q <p2 (p - 1)N- p - 1,p =NpN- p.从而在更弱的条件下将 p=2或次临界指数的情形推广到P_Laplacian及临界指数的情形 ,同时推广了a(x) =0时的某些结果 .

【Abstract】 This paper is concerned with the existence of the we ak positive solution of the following nonlinear Dirichlet problem on some conditio ns:- div (|u| p-2 u)+a(x)u p-1 =h(x)u q+u p *-1 ,x∈R N,u≥0,u0,∫ R N ?a(x)|u| p d x<+∞.Where a : R N →R is continuous and nonnegati ve, h : R N →R is some integrable function and 2 ≤ p<N, p 2≤ N, 0<q<p 2(p-1)N-p-1, p *=NpN-p . Some results as p =2 or sub_ critical exponent are generalized to P_Laplacian and critical exponent on weaker conditions, and some results as a(x) =0 are generalized too.

【基金】 国家自然科学基金资助项目 (10 1710 32 );广东省自然科学基金资助项目 (0 116 0 6 )
  • 【文献出处】 华南理工大学学报(自然科学版) ,Journal of South China University of Technology(Natural Science) , 编辑部邮箱 ,2003年03期
  • 【分类号】O175.25
  • 【下载频次】38
节点文献中: 

本文链接的文献网络图示:

本文的引文网络