节点文献
压力超过分叉荷载时中点屈曲位移的确定
Computation for buckling displacement of Euler pole’s mid-point
【摘要】 运用Maclaurin公式将曲率公式展开为级数的方法 ,建立了Euler杆在考虑几何非线性时后屈曲的微分方程 ,导出了超过分叉点时压力与中点屈曲位移的关系式 .在此基础上 ,编制了求解程序用于计算这一超越积分方程 ,通过算例展示了压力大于分叉荷载时压力与中点屈曲位移的关系 .理论表明 ,当压力达到分叉点后 ,Euler杆不但不会突然丧失承载力 ,相反其承载力却有一定程度的增长 ,但随着Euler杆长细比的增加 ,中点屈曲位移对压力的反应越来越敏感 .研究结论与实验结果完全吻合 .
【Abstract】 A differential equation is established for the buckling of Euler pole with its non-linearing taken into consideration by precise expression of curvature by Maclaurin series. A formula is established and programmed for the displacement and the relationship between the load greater than critical load, and the displacement of the mid-point of the pole. The study shows that the Euler pole doesn’t lose its bearing power when the load is added up to the critical load, and on the contrary, its bearing power increases to a certain extent. The study fits well into the result of test.
【Key words】 Euler pole; equilibrium configuration; bifurcation load; failure; buckling; hysteresis characteristic;
- 【文献出处】 哈尔滨工业大学学报 ,Journal of Harbin Institute of Technology , 编辑部邮箱 ,2003年04期
- 【分类号】TB12
- 【被引频次】1
- 【下载频次】83