节点文献
关于伪素数的对偶公式簇
A Cluster of Anntithesis Formulas on Improper Primes
【摘要】 伪素数与绝对伪素数在Lehmer猜想及G.Giuga猜想等数论问题的研究中有着非常重要的作用.本文通过推广费尔马数与默森尼数,获得了伪素数的判别方法及两类伪素数的对偶公式簇.
【Abstract】 Both improper primes and Carmichael numbers play a very important role in the research on theory of numbers.This paper presents the acquisition of the methods of distinguishing improper primes as well as the acquisition of in these two improper primes by generalizing Fermat numbers and Mersenne numbers.
【关键词】 伪素数;
绝对伪素数;
广义费尔马数;
广义默森尼数;
Lehmer猜想;
G.Giuga猜想;
【Key words】 Improper primes; Carmichael numbers; Generalized Fermat numbers; Generalized mersenne numbers; Lehmer hypothesis; G.Giuga hypothesis;
【Key words】 Improper primes; Carmichael numbers; Generalized Fermat numbers; Generalized mersenne numbers; Lehmer hypothesis; G.Giuga hypothesis;
【基金】 广西民族学院重点项目资助课题(03SXX000002)
- 【文献出处】 广西民族学院学报(自然科学版) ,Journal of Guangxi University For Nationalities(Natural Science Edition) , 编辑部邮箱 ,2003年02期
- 【分类号】O156.4
- 【被引频次】2
- 【下载频次】41