节点文献

用小波神经网络检测结构损伤

PREDICTION OF STRUCTURAL DAMAGE BY THE WAVELET-BASED NEURAL NETWORK

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 鞠彦忠阎贵平陈建斌陈景彦陈建华

【Author】 JU Yan-zhong1 , YAN Gui-ping1 , CHEN Jian-bin2 , CHEN Jing-yan3 , CHEN Jian-hua3 (1. School of Civil and Engineering, Northern Jiaotong University, Beijing 100044, China; 2. Civil Engineering College, Tongji University, Shanghai 200092, China; 3. Departmentof Civil Engineering, Northeast China Institute of Electric Power Engineering, Jilin 132012, China)

【机构】 北方交通大学土木工程学院同济大学土木工程学院东北电力学院建工系东北电力学院建工系 北京100044北京100044上海200092吉林132012吉林132012

【摘要】 用小波和神经网络ART2相结合的方法检测结构的损伤位置。给出了小波变换和人工神经网络的基本理论及其用于损伤检测的原理与特点。通过把小波变换作为神经网络的前处理来构造小波神经网络。首先通过数值试验检验了小波消噪和小波神经网络损伤检测的能力。然后在一个框架结构模型上进行了试验。实验证明这种方法使网络抗噪声能力增强,使损伤识别的效果更好。ART2网络具有自动从环境中学习的能力,能自动的给出新的识别输出。

【Abstract】 The application of wavelet-based neural network ART2 to the damage detection of structure is discussed. A method combining dyadic wavelet with neural network of ART2 is presented and the damage location can be well identified with this method. The basic theories of artificial neural network and wavelet transform are given and their features and the principle of damage detection are analyzed. Wavelet-based neural network is constructed by taking wavelet transform as the pre-processor of neural network. Then the wavelet de-noise, the detection of changes of a signal and the ability of damage detection of wavelet-based neural network are tested by numerical samples. The effectiveness of this method is attested further by a model frame structure. The results show that the present method is feasible and it has advantages of few requirements of historical data, automatic increase of identification category, and the noiseproof ability.

  • 【文献出处】 工程力学 ,Engineering Mechanics , 编辑部邮箱 ,2003年06期
  • 【分类号】TU317
  • 【被引频次】58
  • 【下载频次】383
节点文献中: 

本文链接的文献网络图示:

本文的引文网络