节点文献

一种采用高斯隐马尔可夫随机场模型的遥感图像分类算法

A REMOTELY SENSED IMAGE CLASSIFICATION ALGORITHM BASED ON GAUSSIAN HIDDEN MARKOV RANDOM FIELD MODEL

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 黄宁朱敏慧张守融

【Author】 Huang Ning Zhu Minhui Zhang Shourong (Institute of Electronics, Chinese Academy of Sciences, Beijing 100080, China)

【机构】 中国科学院电子学研究所微波成像重点实验室中国科学院电子学研究所微波成像重点实验室 北京 100080北京 100080北京 100080

【摘要】 该文研究了无监督遥感图像分类问题。文中构造了图像的隐马尔可夫随机场模型(HiddenMarkov Random Fleid,HMRF),并且提出了基于该模型的图像分类算法。该文采用有限高斯混合模型(Finite Gaussian Mixture,FGM)描述图像像素灰度的条件概率分布,使用EM(Expectation-Maximization)算法解决从不完整数据中估计概率模型参数问题。针对遥感图像分布的不均匀特性,该文提出的算法没有采用固定的马尔可夫随机场模型参数,而是在递归分类算法中分级地调整模型参数以适应区域的变化。实验结果表明了该文算法的有效性,分类算法处理精度高于C-Means聚类算法.。

【Abstract】 The problem of unsupervised classification of remotely sensed image is considered in this paper. A Hidden Markov Random Field (HMRF) model is built and a new image classification algorithm based on the HMRF model is presented to the remote sensing application. In the algorithm, the Finite Gaussian Mixture (FGM) model is used to describe the density function of the image pixel intensity, the Expectation Maximization (EM) algorithm is used for the HMRF model parameters under the incomplete data condition, and MAP (Maximum A Posteriori) method is used to estimate the image class label. As the MRF model with fixed parameters does not fit the real remotely sensed image very well, this paper adjusts the MRF model’s parameters during the classification procedure. The novel image classification method gives a more accurate and more robust image classification.

  • 【文献出处】 电子与信息学报 ,Journal of Electronics and Information Technology , 编辑部邮箱 ,2003年01期
  • 【分类号】TP751
  • 【被引频次】42
  • 【下载频次】686
节点文献中: 

本文链接的文献网络图示:

本文的引文网络