节点文献
混沌周期解提高测量灵敏度算法及抗干扰分析
Study on Enhancing Delicacy Sensors Using Chaotic System
【摘要】 混沌动力学系统具有初始条件的极端敏感性 ,当参数空间发生漂移时 ,系统的解空间将出现很大的变化 .以Feigenbaun映射为例 ,分析了参数引起的分叉行为 ,提出利用混沌周期解提高测试系统灵敏度的方案 .调整参数使测试系统工作在周期解的区域 ,根据参数敏感激发混沌系统周期数变化 ,设计了测量算法改善测量的精度和灵敏度 ,对混沌系统的抗干扰性进行了分析 .
【Abstract】 The chaotic system will bifurcate when the system parameters change a little.If the measured signal was put to the chaotic system,it would be get the stable state,period states and chaotic states.In the article,controlling the system work at the period states makes the states changes with the signal,A chaotic circuit has been added to the measurement system to improve the delicacy.The measurement delicacy was analyzed.The results of chaotic system immuned with the noises were given.
【关键词】 灵敏度;
混沌应用;
测量精度;
【Key words】 high delicacy sensing; chaotic application; measurements accuracy;
【Key words】 high delicacy sensing; chaotic application; measurements accuracy;
【基金】 浙江省自然科学基金 (No .6970 0 1 )
- 【文献出处】 电子学报 ,Acta Electronica Sinica , 编辑部邮箱 ,2003年01期
- 【分类号】TN911
- 【被引频次】4
- 【下载频次】78