节点文献

基于Level set方法的医学图像分割

Level Set Method Based Medical Image Segmentation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 梁晓云罗立民曾卫明

【Author】 LIANG Xiao-yun, LUO Li-min, ZENG Wei-ming (Image processing Lab., Southeast University, Nanjing 210096, China)

【机构】 东南大学影像实验室东南大学影像实验室 江苏南京210096江苏南京210096江苏南京210096

【摘要】 本文引入了一种基于偏微分方程的曲线进化方法—Level set方法,通过与Fast marching方法的结合,可以实现运算速度的大大提高。同时引进了更有效的Kim提出的GMM(Group Marching Method)方法,减少了运算量,并给出了改进方法。最后,把该方法用于仿真图与医学图像分割中,获得了较好的效果。

【Abstract】 A PDE (Partial Differential Equation)-based curve evolution method, i.e. Level-set method, is proposed. Using this method combined with fast marching, the operational speed can be greatly improved. A new method called GMM (Group Marching Method), which was presented by Kim, was preferred because of its efficiency. Furthermore, an improved method was also given in this paper. Examples of experiment using this method for both the synthetic image and the medical image are illustrated. At last, encouraging results were shown in medical image segmentation. It seems that the method proposed has better performance than those presented before.

【关键词】 LevelsetFastMarchingGMM图像分割
【Key words】 Level setfast marchingGMM, image segmentation
  • 【文献出处】 电路与系统学报 ,Journal of Circuits and Systems , 编辑部邮箱 ,2003年06期
  • 【分类号】TP391.41
  • 【被引频次】17
  • 【下载频次】366
节点文献中: 

本文链接的文献网络图示:

本文的引文网络