节点文献
Box-Jenkins模型阶次与参数同时估计的递推算法
Recursive algorithm for simultaneous identification of Box-Jenkins model order and parameters
【摘要】 研究了Box-Jenkins模型阶次与参数的同时估计问题。基于信息压缩阵的UD分解技术和广义增广最小二乘原理,提出Box-Jenkins模型阶次与参数同时估计的一种速推算法,减少了辨识计算量,改善数值稳定性,提高了辨识精度。仿真结果表明该算法的有效性。
【Abstract】 The problem of simultaneous identification of Box-Jenkins model order and parameter are investigated. By using the UD-factorization of the augmented information matrix (AIM) and the generalized extend least squares (GELS), an recursive algorithm for simultaneous identification of Box-Jenkins model order and parameters are presented. The proposed results can reduce computation labor, improve numerical stability and precision of identification. Simulation shows the effectiveness of the algorithm.
【关键词】 辨识与参数估计;
信息压缩阵;
UD分解;
广义增广最小二乘法;
【Key words】 identification and parameter estimation; augmented information matrix; UD factorization; generalized extend least squares;
【Key words】 identification and parameter estimation; augmented information matrix; UD factorization; generalized extend least squares;
【基金】 中国博士后科学基金(2000—31);河南省教育厅科研计划项目(1999510005)
- 【文献出处】 电机与控制学报 ,Electric Machines and Control , 编辑部邮箱 ,2003年02期
- 【分类号】TP13
- 【被引频次】11
- 【下载频次】193