节点文献
一种基于粗糙集理论的连续属性离散化方法
New Method of Discretization of Continuous Attributes Based on Rough Set
【摘要】 基于粗糙集的有关理论,提出了一种新的连续属性离散化方法·首先说明决策属性支持度的概念,再利用决策属性支持度作为反馈信息,提出一种领域独立的基于决策属性支持度的连续属性离散化算法·该算法能在保证决策表原始分类能力不变的前提下,提高约简效率·同时,各个属性拥有较少的分割区间,会使规则集合更加简洁·通过实例分析比较,说明该算法是非常有效的·
【Abstract】 Based on theory of the rough set, a new method of discretization of continuous attributes was presented.The traditional rough set theory can only deal with the discrete attributes in database.The concept of decision attribute support degree was proposed. Using feedback information from decision attribute support degree a new method of discretization of continuous attributes was proposed based on independent domain. The suggested method can improve the efficiency of knowledge reduction when the original decision table keeps stable. At the same time, the rule sets are simple with less segmental interval. The approach is encouraging and effective.
【Key words】 rough set theory; decision table; decision attribute support degree; discretization; data mining;
- 【文献出处】 东北大学学报 ,JOURNAL OF NORTHEASTERN UNIVERSITY , 编辑部邮箱 ,2003年08期
- 【分类号】TP18
- 【被引频次】57
- 【下载频次】691