节点文献

支持辊磨损模型的模拟退火算法求解

Wear Model of Backup Roll in Plate Mills by Simulated Annealing Algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 孙林张清东陈先霖何安瑞宋耀华张光新

【Author】 SUN Lin, ZHANG Qingdong, CHEN Xianlin, HE Anrui, SONG Yaohua, ZHANG Guanxin1 )Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China 2) Wuhan Iron and Steel (Group) Co, Wuhan 430083, China

【机构】 北京科技大学机械工程学院武汉钢铁(集团)公司武汉钢铁(集团)公司 北京100083 武汉钢铁(集团)公司武汉430083北京100083武汉430083

【摘要】 在大量实测数据的基础上,结合理论分析,用统计方法建立起适合工程应用的支持辊磨损模型.该模型是一个多峰且高度非线性系统的半经验公式,其参数的估计复杂且计算量大.借助于带记忆的模拟退火算法,得到有效的解决.计算结果表明该模型具有较高的预报精度.在武钢2800四辊轧机应用后,取得明显效果.

【Abstract】 A statistical wear model of backup roll was built up based on a large number of measured data. The model is a multiple extremes and high non-linearity semi-theoretic formula whose pattern and magnitude are hardly defined with classical optimization methods because the computation is large and complex. By using the simulated annealing algorithm with memory, the coefficients in the roll wear model are optimized. The calculation results indicate a higher precision for prediction. After the model was applied in a 2800 4-roll mill of Wuhan Iron and Steel (Group) Co, the plate shape had been notably improved.

【基金】 国家自然科学基金资助项目(No.59835170)
  • 【文献出处】 北京科技大学学报 ,Journal of University of Science and Technology Beijing , 编辑部邮箱 ,2003年02期
  • 【分类号】TG335
  • 【被引频次】5
  • 【下载频次】195
节点文献中: 

本文链接的文献网络图示:

本文的引文网络