节点文献

一种通用的故障诊断系统设计方法

A UNIVERSAL DESIGNING METHOD FOR FAULT DIAGNOSIS SYSTEMS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 何佳洲周志华尹旭日陈世福

【Author】 He Jiazhou, Zhou Zhihua, Yin Xuri, Chen Shifu (State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093)

【机构】 南京大学计算机软件新技术国家重点实验室

【摘要】 目前的故障诊断系统中普遍存在缺乏通用性、对故障先验知识与系统动态数据利用不均衡、稳定性和可塑性难以两全等缺陷,本文针对这些问题提出了一种故障模型,运用符号学习与神经网络相结合构成的增量式混合型学习算法,成功地对故障示例集进行处理,在此基础上给出了一种通用故障诊断系统设计方法。实验表明,利用该方法实现的系统在进行故障诊断时可以取得较好的效果。

【Abstract】 In this paper, we put forward a designing method for Fault Diagnosis Systems(FDS) by proposing a new fault model and using the incremental hybrid learning algorithm which tightly combines symbolic learning and neural networks. It’s capable of overcoming several shortcomings in existing diagnosis systems, such as lack of universiality, unbalance in the use of prior fault knowledge and the use of dynamic data, and a dilemma between stability and plasticity. The experiment system implemented by this method shows a good diagnostic ability.

【关键词】 故障诊断机器学习神经网络
【Key words】 Fault DiagnosisMachine LearningNeural Networks
【基金】 国家自然科学基金;江苏省自然科学基金
  • 【文献出处】 模式识别与人工智能 ,Pattern Recognition and Artificial Intelligence , 编辑部邮箱 ,2000年04期
  • 【分类号】TP277
  • 【被引频次】7
  • 【下载频次】129
节点文献中: 

本文链接的文献网络图示:

本文的引文网络