节点文献
非线性波动与神经传播混合型方程的整体紧吸引子
THE UNIVERSAL COMPACT ATTRACTOR FOR MIXED EQUATIONS OF NONLINEAR WAVE AND NERVE CONDUCT
【摘要】 本文研究非线性波动与神经传播混合型方程u_tt=u_xxt+σ(u_x)_x-h(u)u_t-f(u)+g(x)初边值问题的整体吸引子.在σ∈C~2,σ'(s)>σo>0及h(s)∈C~1,-Co<)且∫~u_oh(s)sds>0)条件下我们得到了与该方程相应的动力系统整体紧吸引子的存在性,并证明了它具有有限的Hausdorff维数和fractal维数.
【Abstract】 This paper deals with the universal attractor of initial-boundary value problemfor mixed equations of nonlinear wave and nerve conduct u_tt=u_xxt+σ(u_x)_x-h(u)u_t-f(u)+g(x).Under the assumptions σ∈C~2,σ’(s)>σo>oh(s)∈C~1, -Co<h(s) (o<Co< ) and ∫~u)o h(s)s ds<Cu~2 (C>o),we obtain the existence of universal compact attractor of this problem. Its Hausdorff andfractal dimensions are proved to be finite.
【关键词】 非线性波方程;
神经传播方程;
整体吸引子;
维数;
【Key words】 Nonlinear wave equation; nerve conduct equation; universal attractor; dimension;
【Key words】 Nonlinear wave equation; nerve conduct equation; universal attractor; dimension;
- 【文献出处】 应用数学学报 ,ACTA MATHEMATICAE APPLICATAE SINICA , 编辑部邮箱 ,1998年03期
- 【分类号】O175
- 【被引频次】11
- 【下载频次】100