节点文献
利用人工神经网络实现缺陷类型识别
Classification of flaws through an artificial neural network
【摘要】 本文在对各向同性均匀固体中横穿孔、平底孔和裂缝缺陷超声散射特性分析的基础上,分别用回波幅度话和去卷积幅度措作为特征量,利用人工神经网络对缺陷类型进行识别.结果表明,用去卷积幅度谱作为特征量时,利用人工神经网络对这三类缺陷的类型识别,可获得较理想的结果.
【Abstract】 In this paper, the scattering characteristics of an ultrasonic wave in a homegeneous solid by three types of flaw are considered the three types being the traversecylindrical cavily, the blat-bottom hole and the plane crack. The flaws are then classifiedby a neural network on using the respectively amplitude spectra of ultrasonic echoes andthose of deconvolved ultrasonic echoes as characteristic features. It is demonstrated thatthe latter improve greatly the classification accuracy.
【关键词】 人工神经网络;
缺陷类型识别;
去卷积;
【Key words】 Artifical neural network; Classifcation of flaws; Deconvolution;
【Key words】 Artifical neural network; Classifcation of flaws; Deconvolution;
【基金】 国家自然科学基金;中国科学院声学研究所资助
- 【文献出处】 应用声学 ,APPLIED ACOUSTICS , 编辑部邮箱 ,1998年02期
- 【分类号】TB55
- 【被引频次】34
- 【下载频次】262