节点文献

风力机系统的神经网络模型辨识

NEURAL NETWORKS MODEL IDENTIFICATION OF THE WIND TURBINE SYSTEM

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 金增包能胜陈庆新姜桐

【Author】 Jin Zeng Cheng Qingxin Jiang Tong (Institute of the Energy and Environmental Science,Shantou University,Shantou 515063)

【机构】 汕头大学能源与环境研究所

【摘要】 应用人工神经网络的建模方法,采用多层感知器的模型结构,利用自适应学习速率的BP学习算法,辨识出风力机系统的功能模型,并把辨识模型的仿真结果与系统实验测量数据相对比,开展了与经典系统辨识方法的比较研究,以检验神经网络模型的可靠性。实验结果表明,这种新的风力机系统建模方法具有很高的精度。

【Abstract】 In this paper,the wind turbine system experiment model is presented.The model is made up with a multilayer perception which is trained by adaptive learning rate BP algorithm.The model prediction result is compared to experiment data and also compared to the prediction result which is from linear experiment model,based on modern identification theory.

  • 【文献出处】 太阳能学报 ,ACTA ENERGIAE SOLARIS SINICA , 编辑部邮箱 ,1998年02期
  • 【分类号】TP18,TK83
  • 【被引频次】40
  • 【下载频次】284
节点文献中: 

本文链接的文献网络图示:

本文的引文网络