节点文献

基于 RBF 网络的 Takagi-Sugeno 模糊控制器参数获取

RBF Network Based Parameters Obtaining for Takagi Sugeno Fuzzy Controller

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 经宁潘俊民

【Author】 Jing Ning, Pan Junmin Department of Information and Control Engineering, Shanghai Jiaotong University,China

【机构】 上海交通大学信息与控制工程系

【摘要】 RBF网络是一种广泛应用的神经网络模型,而Takagi-Sugeno模糊推理规则是一种简化的模糊推理规则,两种方法的起源不同.文中分析了在一定条件下,RBF网络与简化的Takagi-Sugeno模糊推理规则的函数等效性,揭示了网络权值与推理规则参数的对应关系,从而为两种方法的互换使用奠定了理论基础.在此基础上,提出了使用RBF网络在实时控制过程中为一些复杂的被控对象获取Takagi-Sugeno型模糊控制器参数的方法.以RBF网络作为控制器,在实时闭环控制过程中在线地修正网络权值,通过有限次的学习即可获得较优的网络权值,根据对应关系获得Takagi-Sugeno型模糊控制器的规则参数.一混流式水轮机组的仿真结果证明了该方法的有效性.

【Abstract】 RBF network and Takagi Sugeno fuzzy inference rule are two methods with different origins. The former is one of the widely used neural network models, and the latter is a kind of simplified fuzzy inference rules. The paper shows the function equivalence under certain conditions between the two methods and the corresponding relationship between the RBFN weights and the fuzzy inference rule parameters, which lays the foundation for mutual exchange of the two methods in some applications. On the basis of it, a new approach is proposed, in which RBFN works as a controller to obtain Takagi Sugeno fuzzy controller parameters for some complex objects online. The RBFN weights are modified in the course of control process. After learning, the proper values of RBFN weights are obtained,and accordingly the Takagi Sugeno controller parameters are also obtained. The simulation results prove the validity.

  • 【文献出处】 上海交通大学学报 ,JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY , 编辑部邮箱 ,1998年06期
  • 【分类号】TP18
  • 【被引频次】7
  • 【下载频次】81
节点文献中: 

本文链接的文献网络图示:

本文的引文网络