节点文献
综合神经网络在热连轧机组轧制压力预报中的应用
Application of Combination Neural Network to the Prediction ofthe Rolling Load in the Finishing Train of Hot Strip Mill
【摘要】 由于传统的轧制压力计算模型结构简单,即使采用自适应技术,也难以适应不断提高的尺寸精度的要求。为了提高精轧机组轧制压力预设定精度,采用人工神经网络和传统数学模型相结合的综合神经网络方法。经离线仿真证明,该方法的预报精度优于传统方法,预报结果的相对误差基本限制在±5%以内。
【Abstract】 As the structure of classical mathematical model is simple, even with selfadapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, it is discussed that the neural networks in combination with mathematical models are used to improve the precision of prediction of rolling load. Offline simulation shows that aforementioned method is much better than the classical one. The relative error is between ±5 %.
【关键词】 人工神经网络;
数学模型;
轧制压力;
热连轧;
【Key words】 artificial neural network; mathematical model; rolling load; hot tandem rolling;
【Key words】 artificial neural network; mathematical model; rolling load; hot tandem rolling;
- 【文献出处】 钢铁研究学报 ,JOURNAL OF IRON AND STEEL RESEARCH , 编辑部邮箱 ,1998年04期
- 【分类号】TP39:TG333,TP39:TG
- 【被引频次】45
- 【下载频次】133