节点文献

综合神经网络在热连轧机组轧制压力预报中的应用

Application of Combination Neural Network to the Prediction ofthe Rolling Load in the Finishing Train of Hot Strip Mill

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 王秀梅王国栋刘相

【Author】 Wang Xiumei Wang Guodong Liu Xianghua

【机构】 华东北大学

【摘要】 由于传统的轧制压力计算模型结构简单,即使采用自适应技术,也难以适应不断提高的尺寸精度的要求。为了提高精轧机组轧制压力预设定精度,采用人工神经网络和传统数学模型相结合的综合神经网络方法。经离线仿真证明,该方法的预报精度优于传统方法,预报结果的相对误差基本限制在±5%以内。

【Abstract】 As the structure of classical mathematical model is simple, even with selfadapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, it is discussed that the neural networks in combination with mathematical models are used to improve the precision of prediction of rolling load. Offline simulation shows that aforementioned method is much better than the classical one. The relative error is between ±5 %.

  • 【文献出处】 钢铁研究学报 ,JOURNAL OF IRON AND STEEL RESEARCH , 编辑部邮箱 ,1998年04期
  • 【分类号】TP39:TG333,TP39:TG
  • 【被引频次】45
  • 【下载频次】133
节点文献中: 

本文链接的文献网络图示:

本文的引文网络