节点文献

一种 PNN 网络的 EM 训练算法

AN EFFICIENT EM TRAINING ALGORITHM FOR PROBABILITY NEURAL NETWORKS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 熊汉春贺前华李海洲

【Author】 Xiong Hanchun He Qianhua Li Haizhou (Dept. of Electronic and Communication Engineering, South China Univ. of Tech. , Guangzhou 510641)

【机构】 华南理工大学电子与通信工程系

【摘要】 提出一种概率神经网络(PNN)的EM(ExpectationMaximization)训练算法.PNN网为一四层前馈网,它构成一个贝叶斯分类器,实现多类分类的贝叶斯判别,它把输入的样本模式,经网络变换为输出的分类判决.其网络节点对应于贝叶斯后验概率公式的各个变量.此PNN网络用高斯核的Parzen窗函数作为核密度函数,网络参数训练由EM算法实现,其学习方式为类间的监督学习和类内的非监督学习.实验表明了此网络及其学习算法在分类应用中的有效性.

【Abstract】 An Expectation-Maximization(EM) training algorithm to estimate the parameters of a special Probability Neural Network(PNN) structure which forms a multicatolog Bayes classifier is proposed in this paper. The structure of PNN is a four-layer Feedforward Neural Networks(FNN), where the Parzen gaussian probability density function is regarded as a internal node. In this way, the EM algorithm is extended to deal with supervised learning one muticatolog of the neural network Gaussian classifier. The computational efficiency and the numerical stability of the training algorithm benefit from the well_established EM framework. The effectiveness of the proposed network architecture and its EM training algorithm are assessed by an experiment.

【基金】 国家教委外事司归国人员研究基金,广东省自然科学基金
  • 【文献出处】 华南理工大学学报(自然科学版) ,JOURNAL OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE) , 编辑部邮箱 ,1998年07期
  • 【分类号】TP301.6,TP18
  • 【被引频次】4
  • 【下载频次】158
节点文献中: 

本文链接的文献网络图示:

本文的引文网络