节点文献
基于分形和神经网络理论的多尺度图象分割方法
MULTISCALE IMAGE SEGMENTATION USING FRACTAL AND NEURAL NETWORK
【摘要】 特征空间聚类分割方法存在的关键问题是有效的特征参数提取和聚类方法的构造。针对这两个问题,本文采用小波变换的多尺度分析方法提取图象的多尺度分形维数作为分割特征参数,用Kohonen自组织特征映射实现特征空间聚类,获得了良好的分割效果。
【Abstract】 Clustering algorithms in feature space are important methods in image segmentation. The choice of the effective feature parameters and the construction of the clustering method are key problems encountered with clustering algorithms. In this paper, the multifrac-tal dimensions are choren as the segmentation feature parameters which are extracted from original image and wavelet-transformed image. Self-Organizing Map(SOM) network is applied to cluster the segmentation feature parameters. The experiment shows that the performance of the presented algorithm is very good.
【关键词】 分形;
小波变换;
神经网络;
图象分割;
【Key words】 Fractal; Wavelet transform; Neural network; Image segmentation;
【Key words】 Fractal; Wavelet transform; Neural network; Image segmentation;
- 【文献出处】 电子科学学刊 , 编辑部邮箱 ,1998年06期
- 【分类号】TP391.41
- 【被引频次】29
- 【下载频次】227